
Postprint, March 2020

Remodularization Analysis for Microservice Discovery
Using Syntactic and Semantic Clustering

Adambarage Anuruddha Chathuranga De Alwis1[0000-0002-4954-6595],
Alistair Barros1[0000-0001-8980-6841], Colin Fidge1[0000-0002-9410-7217], and

Artem Polyvyanyy2[0000-0002-7672-1643]

1 Queensland University of Technology, Brisbane, Australia
{adambarage.dealwis,alistair.barros,c.fidge}@qut.edu.au

2 The University of Melbourne, Parkville, VIC, 3010, Australia
artem.polyvyanyy@unimelb.edu.au

Abstract. This paper addresses the challenge of automated remodularization of
large systems as microservices. It focuses on the analysis of enterprise systems,
which are widely used in corporate sectors and are notoriously large, monolithic
and challenging to manually decouple because they manage asynchronous, user-
driven business processes and business objects (BOs) having complex structural
relationships. The technique presented leverages semantic knowledge of enter-
prise systems, i.e., BO structure, together with syntactic knowledge of the code,
i.e., classes and interactions as part of static profiling and clustering. On a seman-
tic level, BOs derived from databases form the basis for prospective clustering
of classes as modules, while on a syntactic level, structural and interaction de-
tails of classes provide further insights for module dependencies and clustering,
based on K-Means clustering and optimization. Our integrated techniques are
validated using two open source enterprise customer relationship management
systems, SugarCRM and ChurchCRM. The results demonstrate improved feasi-
bility of remodularizing enterprise systems (inclusive of coded BOs and classes)
as microservices. Furthermore, the recommended microservices, integrated with
‘backend’ enterprise systems, demonstrate improvements in key non-functional
characteristics, namely high execution efficiency, scalability and availability.
Keywords: microservice discovery, system remodularization, cloud migration.

1 Introduction

Microservice architecture (MSA) has emerged as an evolution of service-oriented archi-
tecture (SOA) to enable effective execution of software applications in Cloud, Internet-
of-Things and other distributed platforms [1]. Microservices (MSs) are fine-grained,
in comparison to classical SOA components. They entail low coupling (inter-module
dependency) and highly cohesive (intra-module dependency) functionality, down to
individualised operations, e.g., single operation video-download as a MS component,
versus amulti-operation videomanagement SOA component [2]. This promotes systems
performance properties, such as high processing efficiency, scalability and availability.
Reported experiences on MS development concern “greenfield” developments [1],

where MSs are developed from “scratch”. However, major uncertainty exists as to how
MSs can be created by decoupling and reusing parts of a larger system, through refac-
toring. This is of critical importance for the corporate sectors which rely on large-scale



2 Adambarage Anuruddha Chathuranga De Alwis et al.

enterprise systems (ESs), (e.g., Enterprise Resource Planning (ERP) and Customer-
Relationship Management (CRM)), to manage their operations. Analysing ESs and
identifying suitable parts for decoupling is technically cumbersome, given the millions
of lines of code, thousands of database tables and extensive functional dependencies
of their implementations. In particular, ESs manage business objects (BOs) [3], which
have complex relationships and support highly asynchronous and typically user-driven
processes [4–6]. For example, an order-to-cash process in SAP ERP has multiple sales
orders, having deliveries shared across different customers, with shared containers in
transportation carriers, and with multiple invoices and payments, which could be pro-
cessed before or after delivery [7]. This poses challenges to identify suitable and efficient
MSs from ES codes using classical software refactoring and optimal splitting/merging
of code across software modules.
Software remodularization techniques [8–10] have been proposed based on static

analysis, to identify key characteristics and dependencies of modules, and abstract these
using graph formalisms. New modules are recommended using clustering algorithms
and coupling and cohesion metrics. The focus of static analysis techniques includes
inter-module structure (class inheritance hierarchies), i.e., structural inheritance rela-
tionships, and inter-module interactions (class object references), i.e., structural inter-
action relationships. Given that a degradation of logical design reflected in software
implementations can result in classes with low cohesion, other techniques have been
proposed to compare structural properties of classes using information retrieval tech-
niques [10], i.e., structural class similarity. Despite these proposals, studies show that
the success rate of software remodularisation remains low [11].
This paper presents a novel development of software remodularization applied to the

contemporary challenge of discovering fine-grained MSs from an ES’s code. It extends
the syntactic focus of software remodularization, by exploiting the semantic structure
of ESs, i.e., BOs and their relationships, which are, in principle, influential in class
cohesion and coupling. Specifically, the paper presents the following:
◦ A novel MS discovery method for ESs combining syntactic properties, derived from
extracted structural inheritance relationships, structural interaction relationships,
structural class similarity, and semantic properties, derived in turn from databases
and the relationships of BOs managed by classes.
◦ An evaluation of the MS discovery methods that addresses three research ques-
tions (refer Section 4.1) by implementing a prototype and experimenting on two
open-source CRMs: SugarCRM3 and ChurchCRM4. The results show that there is
a 26.46% and 2.29% improvement in cohesion and a 18.75% and 16.74% reduc-
tion in coupling between modules of SugarCRM and ChurchCRM, respectively.
Furthermore, SugarCRM and ChurchCRMmanage to achieve 3.7% and 31.6% im-
proved system execution efficiency and 36.2% and 47.8% scalability improvement,
respectively, when MSs are introduced to the system as suggested by our approach
while preserving overall system availability (refer to Tables 1–6).

The remainder of the paper is structured as follows. Section 2 describes the related
works and background on system remodularization techniques. Section 3 provides a

3 https://www.sugarcrm.com/ 4 http://churchcrm.io/



Remodularization Analysis for Microservice Discovery 3

detailed description of our MS discovery approach while Section 4 describes the imple-
mentation and evaluation. The paper concludes with Section 5.

2 Background and Motivation
This section first provides an overview of existing software remodularization and MS
discovery techniques with their relative strengths and weaknesses. It then provides an
overview of the architectural context of ESs and their alignments withMSs. This context
is assumed in the presentation of our software remodularization techniques (Section 3).

2.1 Related Work and Techniques Used for Software Remodularization

Software remodularization techniques involve automated analysis of different facets
of systems, including software structure, behaviour, functional requirements, and non-
functional requirements. Techniques have focussed on static analysis to analyse code
structure and database schemas of the software systems while dynamic analysis stud-
ies interactions of systems. Both approaches provide complementary information for
assessing properties of system modules based on high cohesion and low coupling, and
make recommendations for improved modularity. However, static analysis is preferable
for broader units of analysis (i.e., systems or subsystems level) as all cases of systems’
execution are covered compared to dynamic analysis [9].
Traditionally, research into software remodularization based on static analysis has

focused on a system’s implementation through two areas of coupling and cohesion
evaluation. The first is structural coupling and cohesion, which focuses on structural
relationships between classes in the same module or in different modules. These in-
clude structural inheritance relationships between classes and structural interaction
relationships resulting when one class creates another class and uses an object refer-
ence to invoke its methods [8]. Structural relationships such as these are automatically
profiled through Module Dependency Graphs (MDG), capturing classes as nodes and
structural relationships as edges [8, 9], and are used to cluster classes using K-means,
Hill-climbing, NSGA II and other clustering algorithms. The second is structural class
similarity (otherwise known as conceptual similarity of the classes) [10]. This draws
from information retrieval (IR) techniques, for source code comparison of classes, un-
der the assumption that similarly named variables, methods, object references, tables
and attributes in database query statements, etc., infer conceptual similarity of classes.
Relevant terms are extracted from the classes and used for latent semantic indexing and
cosine comparison to calculate the similarity value between them. Class similarity, thus,
provides intra-module measurements for evaluating coupling and cohesion, in contrast
to the inter-module measurements applied through structural coupling and cohesion
described above.
Despite many proposals for automated analysis of systems, studies show that the

success rate of software remodularization remains low [11]. A prevailing problem is
the limited insights available from purely syntactic structures of software code to derive
structural and interactional relationships of modules. More recently, semantic insights
available through BO relationships were exploited to improve the feasibility of archi-
tectural analysis of applications. ESs manage domain-specific information using BOs,
through their databases and business processes [5]. Evaluating the BO relationships



4 Adambarage Anuruddha Chathuranga De Alwis et al.

and deriving valuable insights from them to remodularize software systems falls under
the category of semantic structural relationships analysis. Such semantic relationships
are highlighted by the experiments conducted by Pẽrez-Castillo et al. [12], in which
the transitive closure of strong BO dependencies derived from databases was used to
recommend software function hierarchies, and by the experiments conducted by Lu et
al. [13], in which SAP ERP logs were used to demonstrate process discovery based on
BOs. Research conducted by De Alwis et al. [14,15] onMS discovery based on BO rela-
tionship evaluation shows the impact of considering semantic structural relationships in
software remodularization. However, to date, techniques related to semantic structural
relationships have not been integrated with syntactic structural relationships and struc-
tural class similarity techniques. As a result, currently proposed design recommendation
tools provide insufficient insights for software remodularization.

2.2 Architecture for Enterprise System to Microservice Remodularization
As detailed in Section 2.1, there are multiple factors which should be considered in the
MS derivation process. In this section, we define the importance of considering such
factors with respect to the architectural configuration of the ES and MSs.

Order Management Module
Enterprise System

OP1[Order]

OPn[Product]

Class_Order
Product Module
Class_Product

Legacy Database
System

Microservice System

Shared Context 
DB

Text

Shared Context 
DB1

Map Function[order]

OP1[Order]

Adapter

--

OPm[]

--

OPm[Order]

Map
Function[Product]

OP1[Product]--

OPy[Product]

OP1[Product]

OPy[Product]

--

Order
+ id
+ itemName

User
+ id
+ Name

Product
+ id
+ name

1..*

1..*

1

Class_ProdutMan
OP1[Product]

OPy[Product]

--

1..*

OP1[Order]
Class_OrderCal

OPd[Order]

--

OP1[Order]

OPn[]

Class_OrderMan

OPm[Order]

--

OP1[Product]
Class_ProductVal

OPe[Product]

--

Order Management
Microservice

OP1[Order]
Class_Order

Product
Microservice
Class_Product

OPm[]

--

OP1[Product]

OPy[Product]

--

Class_ProdutMan
OP1[Product]

OPy[Product]

--

OP1[Order]
Class_OrderCal

OPd[Order]

--

OP1[Order]
Class_OrderMan

OPm[Order]

--

OP1[Product]
Class_ProductVal

OPe[Product]

--

Order
+ id
+ itemName

Container1

Product
+ id
+ name

Container2

Class Subtype Relationship Class Object Reference Relationship

Fig. 1: Overview of an enterprise system extended with extracted microservices.

As depicted in Figure 1, an ES consists of a set of self-contained modules drawn from
different subsystems and is deployed on a “backend” platform. Modules consist of a set
of software classes which contain internal system operations and operations which man-
age one or more BOs through create, read, update, and delete (CRUD) operations. For
example ‘Order Management Module’ consists of several classes such as ‘Class_Order’,
’Class_OrderCal’ and ‘Class_OrderMan’, which contain operations manipulating data
related to ‘Order’ BO and ‘Class_ProductVal’, which contain operations manipulating
data related to ‘Product’ BO. Furthermore, the modules are interrelated through method
calls between classes in different modules (see the relationship of ‘Class_ProductVal’
and ‘Class_ProductMan’ in Figure 1). In addition, classes inside each individual module
can have generalization/specialization relationships (i.e., subtype-supertype relation-
ships) between different classes as depicted by the relationships between ‘Class_Order’
and ‘Class_OrderMan’, and ‘Class_Product’ and ‘Class_ProductMan’ in Figure 1.



Remodularization Analysis for Microservice Discovery 5

The MSs, on the other hand, support a subset of operations through classes which are
related to individual BOs. Such implementations lead to high cohesion within MSs and
low coupling between the MSs (see the ‘Order Management Microservice’ and ‘Product
Microservice’ in Figure 1). The MSs communicate with each other through API calls
in case they require information related to different BOs which reside in other MSs. For
example, ‘Order Management Microservice’ can acquire Product values through an API
call to ‘Product Microservice’ (refer arrow between the MSs in Figure 1). The execution
of operations across the ES and MS system is coordinated through business processes,
which means that invocations of BO operations on the MSs will trigger operations on
ES functions involving the same BOs. As required for consistency in an MS system, BO
data will be synchronised across databases managed by ES and MSs periodically.
Based on this understanding of the structure of the ES and MSs, it is clear why we

should consider semantic and syntactic information for the MS discovery process. In
order to capture the subtype relationships and object reference relationships that exist
in the ES system, we need structural inheritance relationship and structural interaction
relationship analysis methods. Such methods can help to group classes which are highly
coupled into one group, such as the grouping of ‘Class_Order’, ‘Class_OrderCal’ and
‘Class_OrderMan’ into one ‘Order Management Microservice’, as depicted in Figure 1.
However, those relationships alonewould not help to capture class similarities at the code
level. For example, the ‘Class_ProductVal’ operates on ‘Product’ BO and relates to the
‘Product Module’ much more than the ‘Order Management Module’. Such information
can be captured using structural class similarity measuring methods. With structural
inheritance and interaction relationships and structural class similarity we can cluster
classes into different modules. However, such modules might not align with the domain
they are related to until we consider the BO relationships of different classes. In Figure 1,
one can notice that different classes in the ES relate to different BOs. As such, it is of
utmost importance to consider the semantic structural relationships in theMS derivation
process, since each MS should aim to contain classes that are related to each other and
perform operations on the same BO (refer to the ‘Order Management Microservice’ and
‘Product Microservice’ in Figure 1).
Previous research has extensively used structural relationships in system remodu-

larization [8–10]. However, when it comes to MS derivation, combining the semantic
structural relationshipswith the syntactic structural relationships should allow deriving
better class clusters suitable for MS implementation. Given this system architecture con-
text and our understanding of the features that should be evaluated for MS systems, we
developed algorithms, as described in Section 3, for MS discovery. We use the following
formalisation here onwards to describe the algorithms.
Let I and O be a universe of input types and output types, respectively. Moreover,

let OP, B, T and A be, respectively, a universe of operations, BOs, database tables and
attributes. We characterize a database table t ∈ T by a collection of attributes, i.e.,
t ⊆ A, while a business object b ∈ B is defined as a collection of database tables, i.e.,
b ⊆ T. An operation op, either of an ES or MS system, is given as a triple (I,O,T),
where I ∈ I∗ is a sequence of input types the operation expects for input, O ∈ O∗ is a
sequence of output types the operation produces as output, andT ⊆ T is a set of database



6 Adambarage Anuruddha Chathuranga De Alwis et al.

tables the operation accesses, i.e., either reads or augments.5 Each class cls ∈ CLS is
defined as a collection of operations, i.e., cls ⊆ OP.

3 Clustering Recommendation for Microservice Discovery

In order to derive the MSs while considering the factors defined in Section 2, we devel-
oped a six-step approach, which is illustrated in Figure 2. In the first step, we derive the
BOs by evaluating the SQL queries in the source code structure and also the database
schemas and data as described by Nooijen et al. [16]. Next, we analyse the semantic
structural relationships by deriving the class and BO relationships. Steps 3–5 are used
to discover the syntactic details related to the ES. In the third step, we measure the struc-
tural class similarities between the classes and in steps 4 and 5 we capture the structural
details of the classes, step 4 discovers the structural inheritance relationships and step 5
discovers the structural interaction relationships. The details obtained through steps 2–5
are provided to the final step in which a K-means clustering algorithm is used to cluster
and evaluate the best possible combination of classes for MS development and finally
suggest them to the developers. Detailed descriptions of these steps and corresponding
algorithms are provided in Section 3.1.

Class SQL and BO Relationship Analysis

Static Analysis Of Legacy System

Software System
Source Code

Business Object 
Derivation

1

2
System

Database
Semantic Structural Relationship Analysis

Structural Class Similarity Analysis
3

Syntactic Structural Relationship Analysis

Structural Inheritance Relationship Analysis
4

Structural Interaction Relationship Analysis
5

K-Means
Clustering

6
Microservice

Recommondation

Fig. 2: Overview of our microservice discovery approach.

3.1 Clustering Discovery Algorithms

As depicted in Figure 2, in order to derive a satisfactory clustering of system classes
and operations and suggest MSs recommendations, we supply the K-means algorithm
with four main feature sets. To derive these feature sets, we use Algorithm 1, which is
composed of eight steps.
In an ES, the information related to a BO is often stored in several database tables.

Thus, we define a BO b ∈ B as a collection of database tables, i.e., b ⊆ T . As such, to
identify the BOs, in the first step, the BOS function is performed by Algorithm 1, which
derives the BOs, B, of the system through the analysis of the database table relationships
and their data similarities, as described by Nooijen et al. [16] (see line 1). In the second
step of the algorithm, the function CLSEXT is used to extract code related to each class
cls ∈ CLS from the system code by searching through its folder and package structure
(see line 2).
In the third step, we extract information required for the structural class similarity

analysis using information retrieval (IR) techniques. As such, in the third step, the algo-
rithm identifies unique words UW related to all the classes using function UWORDEXT

5 A∗ denotes the application of the Kleene star operation to set A.



Remodularization Analysis for Microservice Discovery 7

(see line 3) which requires all the source codes of the classes CLS, and stop words
STW, which should be filtered out from the classes. In general, IR techniques analyse
documents and filter out the content which does not provide any valuable information
for document analysis, which are referred to as ‘stop words’. In our case, the stop words
(STW) contain syntax related to the classes, common technical terms used in coding
in that particular language (in this case PHP) and also common English words which
would not provide any valuable insight about class purpose. These are specified by the
user based on the language of the system they evaluate. The function UWORDEXT first
filters out the stop words STW from the classes CLS and then identifies the collection of
unique words UW in classes CLS, which is generally referred to as a ‘bag of words’ [17].

Algorithm 1: Discovery of BO and class relationships
Input: System code SC of an ES s, stop words related to classes STW and

system database DB
Output: Feature set data borel, cosine, subtyperel, referencerel and BOs B

1 B = {b1 , . . . , bn} := BOS(SC, DB)
2 CLS = {cls1 , . . . , clsm} := CLSEXT(SC)
3 UW = 〈uw1 , . . . , uwz〉 := UWORDEXT(CLS, STW)
4 for each clsi ∈ CLS do
5 for each bk ∈ B do
6 borel[i][k] := BCOUNT(clsi, bk);
7 end
8 for each uws ∈ UW do
9 uwcount[i][s] := WCOUNT(uws, clsi);

10 end
11 end
12 for each clsi , clsk ∈ CLS do
13 cosine[i][k] := COSINECAL(uwcount[i], uwcount[k]);
14 end
15 subtyperel := SUBTYPECAL(CLS);
16 referencerel := REFERENCECAL(CLS);
17 return borel, cosine, subtyperel, referencerel, B

In the fourth step, the algorithm evaluates each class (cls ∈ CLS) extracted in step two
and identifies the BOs which are related to each class. For this purpose, the algorithm
uses the function BCOUNT that processes the SQL statements, comments and method
names related to the classes and counts the number of times tables relate to BOs. This
information is stored in matrix borel (see lines 5–7). In this matrix, each row represents
a class, and each column represents the number of relationships that class has with
the corresponding BO, as depicted in Figure 3(a). This helps to capture the semantic
structural relationships (i.e., BO relationships) data, which provides an idea about the
“boundness” of classes to BOs. For example Class 1 ‘Cls 1’ is related to ‘BO1’ and
‘BO2’ in Figure 3(a).
In the fifth step, the algorithm derives another matrix uwcount, which keeps the

count of unique words related to each class using the function WCOUNT (see lines
8–10). In this matrix, again, rows correspond to classes, and columns correspond to



8 Adambarage Anuruddha Chathuranga De Alwis et al.

unique words identified in step three of the algorithm that appear in the corresponding
classes. The values in uwcount are then used in the sixth step to calculate the cosine
similarity between the documents using COSINECAL function (see lines 12–14). First,
this function normalizes the term frequencies with the respective magnitude L2 norms.
Then it calculates the cosine similarity between different documents, by calculating the
cosine value between two vectors of the uwcount (i.e., the rows related to two classes in
uwcount matrix) and stores the values in the cosinematrix, as exemplified in Figure 3(b).
Note that the cosine similarity of a class to itself is always ‘1’. This provides the structural
class similarity data for clustering.
Next, we extract the structural inheritance relationships (i.e., the class subtype rela-

tionships) and structural interaction relationships (i.e., the class object reference rela-
tionships). This is achieved through steps seven and eight in the algorithm which use
function SUBTYPECAL (see line 15) to identify the subtype relationships and function
REFERENCECAL (see line 16) to identify the class object reference relationships. In
both of these functions, as the first step, the code is evaluated using Mondrian6, which
generates graphs based on class relationships. Then, the graphs are analyzed to create
two matrices, namely subtyperel and referencerel which, respectively summarize the
class subtype and reference relationships for further processing (see subtyperel depicted
in Figure 3(c) and referencerel depicted in Figure 3(d)).

1

3

5

Fig. 3: Matrices derived from Algorithm 1.

The feature set data borel, cosine, subtyperel, referencerel and BOs B obtained from
Algorithm 1 are provided as input to the K-Means algorithm (i.e., Algorithm 2) to
cluster the classes related to BOs based on their syntactic and semantic relationships.
Note that each dataset captures different aspects of relationships between classes in the
given system (see Figure 3). Each initial centroid intcent ∈ IntCent is a row number in
the dataset that we provide. For example, one can select the first row of the dataset (as
we have done in Figure 3, see highlighted in red), as an initial centroid. In that situation,
the IntCent will contain the data related to that specific row of the data set. Given
these datasets as the first step in Algorithm 2, we initialize the distance difference value
distDif to some constant, e.g., 10. The distDif is responsible for capturing the distance
differences between the initial centroids IntCent and the newly calculated centroids
NewCent. If this distance difference is zero, then it means that there is no difference
between the initial centroid values and the newly calculated centroid values (in which
case the algorithm terminates). After initializing the distDif value, the next steps of the
algorithm are performed iteratively until the aforementioned condition of distDif is met
(see lines 2–21).
The first step of the iterative execution is to initialize the set of clusters CLUS, which

we use to store the node groups identified by Algorithm 2. Next, we need to identify
the cluster that each row (or the node) of our data should belong to by comparing

6 https://github.com/Trismegiste/Mondrian



Remodularization Analysis for Microservice Discovery 9

the distance between each node in the dataset and each node in the initial centroids
intcent ∈ IntCent. Hence we iterate through each row of the dataset we obtained from
Algorithm1 (see line 4 inAlgorithm2),while calculating theEuclidean distance between
each row and each initial centroid intcent ∈ IntCent (see lines 4–12 in Algorithm 2).
For this calculation, as the initial step, we define the minimum Euclidean distance value
minEquclidianDis and initialize it to MAX_INTEGER (e.g., 100000). We assign this
value to the minEquclidianDis to ensure that it would be larger than the value we obtain
for the newEuclideanDis (line 7) at the end of the first iteration. Then, we calculate the
Euclidean distance between one data set, for example, row 1 in Figure 3 and each initial
centroid point given. Next, we identify the centroid which has the minimum Euclidian
distance to the node we obtained and allocate that node number to that particular cluster
clus ∈ CLUS (line 13). This process is carried out until all the nodes are clustered based
on the Euclidean distance calculation. In the end, each node in the data set is clustered
towards the centroid which has the minimal distance to it based on the four feature sets
which emphasize that the classes related to that particular cluster are bound to the same
BO and to each other syntactically and semantically.

Algorithm 2: K-Means clustering for microservice discovery
Input: borel, cosine, subtyperel, referencerel, k which is the number of BOs B

and an array of initial Centroid values IntCent
Output: CLUS which captures the clustered MS recommendations.

1 distDif := 10 ; // initialize distDif value
2 while distDif , 0 do
3 CLUS = {clus1 , . . . , clusk} := INITCLUSTERS(k);
4 for 0 ≤ i < borel.size() do
5 minEuclideanDis := MAX_INTEGER; // initialize minEuclideanDis
6 for each intcentj ∈ IntCent do
7 newEuclideanDis := EUCAL(intcentj, borel[i], cosine[i],

subtyperel[i], referencerel[i]);
8 if newEuclideanDis < minEuclideanDis then
9 minEuclideanDis := newEuclideanDis;

10 clusterNumber := j;
11 end
12 end
13 clusclusterNumber := clusclusterNumber + i;
14 end
15 for each clusi ∈ CLUS do
16 NewCent = {newcent1 , . . . , newcentn} := NEWCENTCAL(clusi);
17 end
18 distDif := DISTANCECAL(IntCent,NewCent); // Calculate distances

19 IntCent := NewCent;
20 end
21 return CLUS

The next step of Algorithm 2 is to calculate the new centroids based on the clusters
obtained. For this, we take the mean value of the node data sets belonging to each



10 Adambarage Anuruddha Chathuranga De Alwis et al.

cluster and assign it as the new centroid (see function NEWCENTCAL at lines 15–17 in
Algorithm 2). Then, we calculate the distance difference between the initial centroids
and the new centroids. If this difference is zero, it means that there is no change of
the centroid points and the algorithm has come to the optimum clustering point. If not,
the newly calculated centroids becomes the initial centroids for the next iteration of the
algorithm. At the end of the algorithm, the final set of clusters which contain the classes
of the analysed ES are provided to the developers as recommendations for constructing
MSs based on them.

4 Implementation and Validation

To demonstrate the applicability of the method described in Section 3, we developed
a prototypical MS recommendation system7 capable of discovering the class clusters
related to different BOs, which lead to different MS configurations. The system was
tested against two open-source customer relationship management systems: SugarCRM
and ChurchCRM. SugarCRM consists of more than 8,000 files and 600 attributes in
101 tables, while ChurchCRM consists of more than 4,000 files and 350 attributes in
55 tables. However, most of the files are HTML files which are related to third-party
components used by the systems. For the clustering, we only used the 1,400 classes of
SugarCRM and 280 classes of ChurchCRM which capture the core functionality of the
systems. Using our implementation, we performed static analysis of the source code
to identify the BOs managed by the systems. As a result, 18 BOs were identified in
SugarCRM, e.g., account, campaign, and user, and 11 BOs in ChurchCRM, e.g., user,
family, and email. Then, we performed static analysis of both systems to derive matrices,
similar to those depicted in Figure 3, summarizing the BO relationships, class similarity
relationships, class subtype relationships and class object reference relationships. All
the obtained results were processed by the prototype to identify the class clusters to
recommend MSs. Based on the input, the prototype identified 18 class clusters related
to the BOs in SugarCRM and 11 class clusters related to the BOs in ChurchCRM.
Consequently, each cluster suggests classes for developing an MS that relates to a single
BO.

4.1 Research Questions

Our evaluation aims to answer three research questions:
◦ RQ1: Do syntactic and semantic relationships between source code artifacts of an
ES convey useful information for its remodularization into MSs?
◦ RQ2: Can our MS recommendation system discover MSs that have better cohesion
and coupling than the original ES modules and lead to high scalability, availability,
and execution efficiency in the cloud environment?
◦ RQ3: Can our MS recommendation system discover MSs that lead to better scal-
ability, availability, and execution efficiency in the cloud environment than some
MSs that do not follow the recommendations?

7 https://github.com/AnuruddhaDeAlwis/KMeans.git



Remodularization Analysis for Microservice Discovery 11

4.2 Experimental Setup

To answer the above research questions, we set up the following experiment consisting of
three steps. In the first step, we evaluated the effectiveness of considering four different
features (i.e., feature 1: borel, feature 2: cosine, feature 3: referencerel and feature 4:
subtyperel extracted inAlgorithm 1) in the clustering process. This was achieved through
measuring the Lack of Cohesion (LOC) and Structural Coupling (StrC) of the clusters,
as described by Candela et al. [11], while incrementally adding different features in
the clustering process. We calculated the values for the ES by clustering the classes
into folders while preserving the original package structure, see first rows in Tables 1–
4. Then, we clustered the classes several times, each time adding more features and
calculating the LOC and StrC values. The obtained values are reported in Tables 1–4.
After evaluating the effectiveness of various features for clustering, we assessed the

efficacy of introducing MSs to the ES. To this end, first, we hosted each ES in an AWS
cloud by creating two EC2 instances having two virtual CPUs and a total memory of
2GB, as depicted on the left side of Figure 4. The data related to the systems were stored
in a MySQL relational database instance which has one virtual CPU and total storage
of 20GB. These systems were then tested against 100 and 200 executions generated
by four machines simultaneously, simulating the customer requests, while recording
their total execution time, average CPU consumption, and average network bandwidth
consumption (refer to our technical report [18]). For SugarCRM, we simulated the
functionality related to campaign creation, while for ChurchCRM we simulated the
functionality related to adding new people to the system. For the simulations, we used
Selenuim8 scripts which executed the system in a way similar to a real user.
Next, we introduced the ‘campaign’ and ‘user’ MSs to the SugarCRM system and

‘person’ and ‘family’ MSs to the ChurchCRM system. Each MS was hosted on an AWS
elastic container service (ECS), which has two virtual CPUs and a total memory of
1GB, as depicted on the right side of Figure 4. The data related to the BOs of each
MS (i.e., campaign BO and user BO data of SugarCRM and person BO and family BO
data of ChurchCRM) was stored in separate MySQL relational database instances with
one virtual CPU and total storage of 20GB. Next, the executions were performed on
both ESs, again simulating campaign creation for SugarCRM and adding new people
for ChurchCRM. Since MSs are extended parts of the ESs in these executions, the ESs
used API calls to pass the data to the MSs and the MSs processed and sent back the
data to the ESs. The data in the MS databases and ES databases were synchronized
using the Amazon database migration service. Again, we recorded the total execution
time, average CPU consumption, and average network bandwidth consumption for the
entire system (i.e., ES and MS as a whole) (refer to our technical report [18]). Based on
the attained values, we calculated the scalability, availability, and execution efficiency
of the different combinations, and the obtained results are summarized in Tables 5–6
as ES with MSs(1) (refer to the second rows in Tables 5–6). Scalability was calculated
according to the resource usage over time, as described by Tsai et al. [19]. To determine
availability, first we calculated the packet loss for one minute when the system is down
and then obtained the difference between the total up time and total time (i.e., up time +
down time), as described by Bauer et al. [20]. Efficiency gain was calculated by dividing

8 https://www.seleniumhq.org/



12 Adambarage Anuruddha Chathuranga De Alwis et al.

the total time taken by the legacy system to process all requests by the total time taken
by the corresponding ES system which has MSs.

Region

Availability
Zone 1

Availability 
Zone 3

Amazon Database 
Migration Service

Availability
Zone 2

Region

Availability
Zone 1

Availability 
Zone 3

Availability
Zone 2

Enterprise System Microservice System

Fig. 4: System implementation in AWS.

In the third experiment, we disrupted the suggestions provided by our recommenda-
tion system and developed ‘campaign’ and ‘user’ MSs for SugarCRM, while introducing
operations related to ‘campaign’ to ‘user’ MS and operations related to ‘user’ to ‘cam-
paign’ MS. Similarly, for ChurchCRM, we developed ‘person’ and ‘family’ MSs such
that ‘person’ MS contains operations related to ‘family’ MS and ‘family’ MS contains
operations related to ‘person’ MS. With this change, again, we set up the experiment
as described earlier and obtained the experimental results (refer to our technical re-
port [18]). Then we calculated the scalability, availability and execution efficiencies
of the systems which are summarized in Tables 5–6 as ES with MSs(2) (refer to the
third rows in Tables 5–6). Based on these obtained experimental results we evaluate the
effectiveness of the algorithms by answering the posed research questions.

RQ1: Impact of syntactic and semantic relationships. The lower the lack of cohesion
and structural coupling numbers, the better the cohesion and coupling of the system [11].
Consequently, it is evident from the average numbers reported in Tables 1–4 (refer to
the orange color cells) that clustering improved the cohesion of software modules of
SugarCRM and ChurchCRM by 26.46% and 2.29%, respectively, while reducing the
coupling between modules by 18.75% and 16.74% respectively. Furthermore, it is
evident that introducing additional features (i.e., syntactic and semantic information) in
the clustering process increased the number of modules which obtain better coupling
and cohesion values (refer to the blue cells in Tables 1–4). Thus, we conclude that there
is a positive effect of introducing multiple syntactic and semantic relationships to the
clustering process to improve the overall performance of the system.

RQ2: Recommended MSs vs original ES. According to Tsai et al. [19], the lower
the measured number, the better the scalability. Thus, it is evident that the MS systems
derived based on our clustering algorithmmanaged to achieve 3.7% and 31.6% improved
system execution efficiency and 36.2% and 47.8% scalability improvement (considering
CPU scalability) (refer Tables 5 and 6), for SugarCRM and ChurchCRM, respectively,
while also achieving better cohesion and coupling values (refer Tables 1–4). As such, our
recommendation system discovers MSs that have better cohesion and coupling values
than the original enterprise systemmodules and can achieve improved cloud capabilities
such as high scalability, high availability and high execution efficiency.



Remodularization Analysis for Microservice Discovery 13

Table 1: ChurchCRM ES vs MS System Lack of Cohesion Value comparison.
Features 1 2 3 4 5 6 7 8 9 10 11 Avg
Original ES 61 188 853 7 4 1065 31 378 3064 13 17 516.45
1 and 2 61 77 666 33 8 1453 73 351 3802 3 10 594.27
1,2 and 3 61 77 853 3 4 1564 23 351 3064 13 17 548.18
1,2,3 and 4 58 188 820 7 3 1059 31 351 3012 10 15 504.90

Table 2: ChurchCRM ES vs MS System Structural Coupling Value comparison.
Features 1 2 3 4 5 6 7 8 9 10 11 Avg
Original ES 41 26 61 17 16 70 29 31 123 27 19 41.81
1 and 2 41 25 8 37 20 64 33 31 121 3 7 35.45
1,2 and 3 41 25 61 16 16 68 29 27 123 7 19 41.09
1,2,3 and 4 42 25 34 17 15 63 29 3 112 26 17 34.81

Table 3: SugarCRM ES vs MS System Lack of Cohesion Value comparison.
Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avg
Original ES 32 19 1255 698 1482 0 163 693 349 45 171 1803 1058 0 66 47 317 522 484.44
1 and 2 19 0 1067 1122 1173 0 86 459 170 21 120 953 587 0 36 6 453 187 358.83
1,2 and 3 19 0 1201 626 1173 0 86 459 170 45 120 1027 587 0 36 7 590 268 356.33
1,2,3 and 4 19 0 1201 626 1173 0 86 459 170 45 120 1027 587 0 36 5 590 268 356.22

Table 4: SugarCRM ES vs MS System Structural Coupling Value comparison.
Features Considered 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avg
Original ES 24 12 121 63 48 4 99 24 29 29 28 101 67 0 16 10 82 85 46.77
1 and 2 12 2 117 76 48 4 87 18 25 20 27 85 45 0 15 5 52 64 39.00
1,2 and 3 12 2 116 53 48 4 87 18 22 29 27 79 45 0 15 5 41 83 38.11
1,2,3 and 4 12 2 116 53 48 4 87 18 22 29 27 79 45 0 15 3 41 83 38.00

Table 5: Legacy vs MS System EC2 characteristics comparison for SugarCRM.
System Type Scalabil-

ity
[CPU]

Scalability
[DB CPU]

Scalability
Network

Availabil-
ity

[200]

Availabil-
ity

[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

ES only 3.521 2.972 2.759 99.115 99.087 1.000 1.000
ESwithMSs(1) 2.246 2.532 2.352 99.082 99.086 1.037 1.000
ESwithMSs(2) 2.667 2.546 2.684 99.099 99.099 1.018 0.986

Table 6: Legacy vs MS System EC2 characteristics comparison for ChurchCRM.
System Type Scalabil-

ity
[CPU]

Scalability
[DB CPU]

Scalability
Network

Availabil-
ity

[200]

Availabil-
ity

[400]

Effi-
ciency
[200]

Effi-
ciency
[400]

ES only 3.565 3.109 3.405 99.385 99.418 1.000 1.000
ESwithMSs(1) 1.859 2.751 3.663 95.000 94.871 1.316 1.189
ESwithMSs(2) 2.876 2.667 2.779 95.238 95.000 1.250 1.158



14 Adambarage Anuruddha Chathuranga De Alwis et al.

RQ3: Recommended MSs vs some MSs. MSs developed based on the suggestions
provided by our recommendation system for SugarCRM and ChurchCRM managed to
achieve: (i) 36.2% and 47.8% scalability improvement in EC2 instance CPU utilization,
respectively; (ii) 14.8% and 11.5% scalability improvement in database instance CPU
utilization, respectively; (iii) while achieving 3.7% and 31.6% improvement in execution
efficiency, respectively. However,MSs that violate the recommendations reduced (i) EC2
instance CPU utilization to 24.24% and 19.32% ; (ii) execution efficiency to 1.8% and
2.5%, for SugarCRM and ChurchCRM respectively and reduced database instance CPU
utilization to 14.3% for SugarCRM. As such, it is evident that the MSs developed by
following the recommendations of our system provided better cloud characteristics than
the MSs developed against these recommendations.

4.3 Limitations

Next, we discuss two important limitations of our approach.
Limitation of BO derivation: To derive the BOs related to the given ESs, we used the
method described by Nooijen et al. [16]. However, as described by Lu et al. [13], this
method cannot derive BOs correctly without validation from the system developers.
Hence, in this paper, we manually evaluated accuracy of the derived BOs by referring
to the systems’ manuals and documentation.
Limitation of structural class similarity analysis:The structural class similarity analysis
obtained a ‘Bag of Words’ term frequency and, finally, calculated the cosine similarity
between the documents. The first limitation of this method is filtering out of valuable
information in the data preprocessing stage. This issue was mitigated by manually
evaluating the stop words used in the text preprocessing step. In addition, cosine values
might not provide an accurate idea about the structural class similarity since the structural
similaritymay also depend on the terms used in the definitions of the class names,method
names and descriptions given in comments. This was mitigated to a certain extent by
evaluating the code structure of the software systems before evaluating and verifying
that the class names, method names and comments provide valuable insights into the
logic behind the classes that implement the system.

5 Conclusion
This paper presented a novel technique for automated analysis and remodularization of
ESs asMSs by combining techniques which consider semantic knowledge, together with
syntactic knowledge about the code of the systems. A prototype recommendation system
was developed and validation was conducted by implementing the MSs recommended
by the prototype for two open source ESs: SugarCRM and ChurchCRM. The experiment
showed that the proposed technique managed to derive class clusters which would lead
to MSs with desired Cloud characteristics, such as high cohesion, low coupling, high
scalability, high availability, and processing efficiency. In future work, we will enhance
the technique by consideringmethod level relationships in the analysis ofMS candidates.

Acknowledgment: This work was supported in part, through the Australian Research
Council Discovery Project: DP190100314, “Re-Engineering Enterprise Systems for
Microservices in the Cloud”.



Remodularization Analysis for Microservice Discovery 15

References
1. Newman, S., 2015. Building microservices. O’Reilly Media, Inc.
2. https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/.
3. Barros, A., Duddy, K., Lawley, M., Milosevic, Z., Raymond, K. and Wood, A., 2000, Octo-

ber. Processes, roles, and events: UML concepts for enterprise architecture. In International
Conference on the Unified Modeling Language (pp. 62-77). Springer, Berlin, Heidelberg.

4. Schneider, T., 2012. SAP Business ByDesign Studio: Application Development (pp. 24-28).
Boston: Galileo Press.

5. Decker, G., Barros, A., Kraft, F.M. and Lohmann, N., 2008, December. Non-desynchronizable
service choreographies. In International Conference on Service-Oriented Computing (pp. 331-
346). Springer, Berlin, Heidelberg.

6. Barros, A., Decker, G. and Dumas, M., 2007, May. Multi-staged and multi-viewpoint service
choreography modelling. In Proceedings of the Workshop on Software Engineering Meth-
ods for Service Oriented Architecture (SEMSOA), Hannover, Germany. CEUR Workshop
Proceedings (Vol. 244).

7. Barros, A., Decker, G., Dumas,M. andWeber, F., 2007,March. Correlation patterns in service-
oriented architectures. In International Conference on Fundamental Approaches to Software
Engineering (pp. 245-259). Springer, Berlin, Heidelberg.

8. Praditwong,K.,Harman,M. andYao,X., 2010. Softwaremodule clustering as amulti-objective
search problem. IEEE Transactions on Software Engineering, 37(2), pp.264-282.

9. Mitchell, B.S. and Mancoridis, S., 2006. On the automatic modularization of software systems
using the bunch tool. IEEE Transactions on Software Engineering, 32(3), pp.193-208.

10. Poshyvanyk, D. and Marcus, A., 2006, September. The conceptual coupling metrics for
object-oriented systems. In 22nd IEEE International Conference on Software Maintenance
(pp. 469-478). IEEE.

11. Candela, I., Bavota, G., Russo, B. and Oliveto, R., 2016. Using cohesion and coupling for
software remodularization: Is it enough?. ACM Transactions on Software Engineering and
Methodology (TOSEM), 25(3), p.24.

12. PÃľrezâĂŘCastillo, R., GarcÃŋaâĂŘRodrÃŋguez de GuzmÃąn, I., Caballero, I. and Piattini,
M., 2013. Software modernization by recovering web services from legacy databases. Journal
of Software: Evolution and Process, 25(5), pp.507-533.

13. Lu, X., Nagelkerke, M., van de Wiel, D. and Fahland, D., 2015. Discovering interacting
artifacts from ERP systems. IEEE Transactions on Services Computing, 8(6), pp.861-873.

14. De Alwis, A.A.C., Barros, A., Fidge, C. and Polyvyanyy, A., 2019, October. Business Object
CentricMicroservices Patterns. InOTMConfederated International Conferences: On theMove
to Meaningful Internet Systems (pp. 476-495). Springer, Cham. (LNCS, volume 11877)

15. De Alwis, A.A.C., Barros, A., Polyvyanyy, A. and Fidge, C., 2018, November. Function-
splitting heuristics for discovery of microservices in enterprise systems. In International Con-
ference on Service-Oriented Computing (pp. 37-53). Springer, Cham. (LNCS, volume 11236).

16. Nooijen, E.H., van Dongen, B.F. and Fahland, D., 2012, September. Automatic discovery of
data-centric and artifact-centric processes. In International Conference on Business Process
Management (pp. 316-327). Springer, Berlin, Heidelberg.

17. Lebanon, G., Mao, Y. and Dillon, J., 2007. The locally weighted bag of words framework for
document representation. Journal of Machine Learning Research, 8(Oct), pp.2405-2441.

18. https://drive.google.com/file/d/19niZYleVsuboNETCScYRB9LFVi3_5F2z/view?usp=sharing
19. Tsai, W.T., Huang, Y. and Shao, Q., 2011, December. Testing the scalability of SaaS applica-

tions. In 2011 IEEE International Conference on Service-Oriented Computing and Applica-
tions (SOCA) (pp. 1-4). IEEE.

20. Bauer, E. and Adams, R., 2012. Reliability and availability of cloud computing. John Wiley
& Sons.


